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S U M M A R Y
We develop a non-linear conjugate gradient inversion for global long period electromagnetic
induction studies. The scheme requires computation of derivatives of the regularized penalty
functional. We derive analytical and numerical expressions for these derivatives, and the as-
sociated Jacobian, and show how these can be efficiently implemented by generalizing and
extending an existing finite difference forward solver. Using layered spherical harmonics to
parametrize the model space, we invert a range of synthetic data sets to test the inversion, and
to study vertical and horizontal resolution of currently available data sets. We conclude that
the currently available long-period global geomagnetic observatory data in the period range
5–107 d can resolve large scale (300–500 km vertically, thousands of km horizontally) hetero-
geneities in mantle electrical conductivity reliably at depths ∼ 670–1600 km. By extending
induction response to 0.2–5 d (including daily variation periods), upper-mantle structure could
also be resolved.

Key words: Numerical solutions; Inverse theory; Electrical properties; Non-linear electro-
magnetics; Geomagnetic induction; Composition of the mantle.

1 I N T RO D U C T I O N

Seismic tomographic studies (Jordan 1975; Su & Dziewonski 1992;

Woodward et al. 1993; Romanowicz 2003, and many others) have

shown large lateral changes in seismic velocities throughout the

mantle. There are several possible causes for such heterogeneities,

including variations in chemical composition and temperature asso-

ciated with convection (Boehler 1996), and the introduction of water

and volatiles into the mantle by descending slabs (Lay 1994). Each

of these factors is a strong reason also to expect 3-D heterogeneities

in mantle electrical conductivity. Additionally, laboratory results

applied to samples of wet and dry olivine and other upper-mantle

minerals (e.g. Hirsch & Shankland 1993b; Hirsch et al. 1993; Xu

et al. 1998; Sakamaki et al. 2006) argue in favour of even stronger

lateral heterogeneities in upper-mantle electrical conductivity.

Indeed, it has long been established formally that no global 1-D

model exists that fits all global magnetic observatory data sets to

within statistical bounds (Schultz & Larsen 1990), and that the ob-

served geographic variability of long-period (T > 5 d) geomagnetic

data cannot be explained by the contrast in electrical conductiv-

ity between oceans and continents (Kuvshinov et al. 1990; Tarits

1994; Everett et al. 2003). Strong lateral variations are also implied

by differences between sets of deep, regional 1-D magnetotelluric

soundings that were made possible by very long-period observations

using long electric dipoles (Egbert & Booker 1992; Bahr et al. 1993;

Schultz et al. 1993) and abandoned submarine telecommunications

cables (Lizarralde et al. 1995; Koyama et al. 2003; Utada et al. 2003;

Kuvshinov et al. 2005). However, it is only recently that the rapid

growth of computational resources has made 3-D electromagnetic

(EM) inversion practical. Here we describe development and initial

application of a 3-D EM inversion algorithm based on non-linear

conjugate gradients.

Frequency domain forward solutions in spherical geometry de-

veloped and implemented in the last two decades include a semi-

analytic method based on the perturbation expansion of conductiv-

ity about a background 1-D model (Zhang 1991), finite elements

(Everett & Schultz 1996; Weiss & Everett 1998; Yoshimura &

Oshiman 2002), spherical harmonics combined with finite elements

(Martinec 1999), spectral (Grammatica & Tarits 2002), heteroge-

neous integral equations (Kuvshinov & Pankratov 1994; Koyama

et al. 2003; Kuvshinov et al. 2005) and staggered-grid finite differ-

ence (Uyeshima & Schultz 2000). Time domain techniques, based

on spherical harmonic expansions (Hamano 2002; Velimsky et al.
2003; Velimsky & Martinec 2005) have also been developed for

computing 3-D EM fields of a transient external source.

For our inversion we use the 3-D frequency domain forward solver

of Uyeshima & Schultz (2000) and Toh et al. (2002). This solver

employs a staggered-grid finite difference formulation in spherical

coordinates, analogous to the Cartesian formulation of Mackie &

Madden (1993a,b). The induced magnetic fields are found as a so-

lution to the integral form of Maxwell’s equations, with the system

of linear equations resulting from discretization solved using sta-

bilized biconjugate gradients. The solver has been carefully tested

and cross-compared against the numerical solution of Kuvshinov
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& Pankratov (1994) and the quasi-analytic solution of Martinec

(1998), and assessed to be accurate and efficient enough to be an

attractive kernel of a practical inversion scheme. Here we develop

such a scheme for inversion of frequency-domain magnetic (or mag-

netotelluric) transfer functions.

A number of regional (e.g. Egbert & Booker 1992; Schultz et al.
1993; Olsen 1999; Neal et al. 2000; Ichiki et al. 2001; Utada et al.
2003) and global (Constable & Constable 2004; Kuvshinov & Olsen

2006; Velimsky et al. 2006) 1-D inversions of observatory and satel-

lite data have been previously presented. The only inverse solution

for global 3-D conductivity we are aware of (Schultz & Pritchard

1999) was based on inversion of the augmented Schultz & Larsen

(1987) global Z/H data set. The forward modelling approach used

for this inversion was accurate only for small perturbations about a

prior 1-D model, and it was found that no model satisfying this

limitation could fit the European subset of observatories. A re-

gional mantle scale joint inversion of submarine cable data and

near-shore observatory data has been performed recently for the

area beneath the North Pacific (Koyama et al. 2003), and 3-D per-

turbations around the prior 1-D model of Utada et al. (2003) have

been obtained in this region.

A number of newly available data sources, which may poten-

tially provide better constraints on 3-D mantle electrical conductiv-

ity variations, have not to date been inverted for mantle structure.

For example, Fujii & Schultz (2002) have compiled an improved

and expanded set of observatory response functions. In addition, a

number of new observatories have been installed in recent years,

potentially providing better coverage, particularly in the southern

hemisphere. In future, satellite data (Olsen et al. 2006) may provide

significantly better spatial coverage, particularly in the ocean basins

(Kuvshinov et al. 2006).

Here, we present a fully 3-D inverse tool for global geoelectro-

magnetic sounding. We develop a numerical scheme that allows us

to evaluate data sensitivities efficiently, and to implement a regu-

larized non-linear conjugate gradients (NLCG) inversion. To speed

up gradient evaluations we use an adjoint approach, similar to that

discussed in Rodi & Mackie (2001) and Newman & Boggs (2004).

For the inversion, the Earth’s mantle is parametrized in terms of a

series of heterogeneous layers, each expanded in spherical harmon-

ics. We discuss the spatial resolution of our method for a number of

synthetic examples, and show that an NLCG inversion of data sets

with sufficiently broad frequency content could indeed resolve the

large-scale 3-D distribution of electrical conductivity in the mantle,

which is currently only marginally known. In a future work, we will

report on the application of the method described here to the Fujii

& Schultz (2002) data set.

2 I N V E R S E A P P ROA C H

2.1 Formulation

We solve the regularized least-squares inverse problem, with the

penalty functional defined by

R(m) = (ψ(m) − d)H C−1
d (ψ(m) − d)

+ λ(m − m0)TC−1
m (m − m0). (1)

Here m, m0 ∈ R
M are vectors representing, respectively, the model

parameters and the prior; d ∈ C
N is the data vector; ψ : R

M → C
N

are non-linear data functionals; and λ is a damping parameter. Note

that the data space is in general complex, while the model space

is real. Additionally, Cd : C
N → C

N and Cm : R
M → R

M are

data and model covariance operators; and the subscript H denotes

the Hermitian conjugate transpose. In our analysis, we take Cd to

be diagonal, such that C−1
d scales by the inverse of the data error

variance.

We can say that a model ‘fits the data’ if the squared normalized

data misfit norm

Rd(m) = [ψ(m) − d]H C−1
d [ψ(m) − d] (2)

is sufficiently close to its expected value, that is, the number of

independent data components. We obtain the inverse solution by

minimizing the model norm

Rm = (m − m0)TC−1
m (m − m0) (3)

subject to fitting the data as defined by (2), within a specified tol-

erance. For a fixed value of λ, a stationary point of (1) corresponds

to a local minimum of the model norm Rm, subject to the achieved

data misfit Rd (e.g. Parker 1994).

2.2 Forward problem

The forward solver (Uyeshima and Schultz 2000; henceforth U&S)

is effectively equivalent to a numerical solution of the vector

Helmholtz equation for the magnetic field H, assuming harmonic

time dependence of the form eiωt,

∇ × (ρ∇ × H) + iωμ0H = 0 (4)

in a computational domain that includes the resistive air and conduc-

tive Earth’s oceans, crust and mantle. Here, H denotes the magnetic

field, ρ is the electrical resistivity, ω is frequency, and μ0 is the

vacuum magnetic permeability. Note that the electrical resistivity

of the air is set to a moderately large finite value of 1010 �m (see

Mackie & Madden 1993b), so that the Helmholtz equation holds

throughout the model domain, while the resulting numerical sys-

tem remains acceptably well conditioned. To complete the system,

the tangential components of the magnetic field H at the upper and

lower boundaries of the domain are specified.

A staggered-grid finite difference method is used to solve (4)

numerically. In the U&S formulation, the computational domain is

subdivided into curved rectangular prisms, such that the components

of H are defined on the edges. The linear system of equations involv-

ing the components of H is symmetric and real everywhere except

along the diagonal. A variant of biconjugate gradients (BiCGStab,

Toh et al. 2002) is used to obtain the solution iteratively. As in

Mackie et al. (1994) and Smith (1996), a divergence correction is

applied as part of the iterative scheme to avoid accumulation of error

in the value of ∇ · H, which should be identically zero.

The lower boundary is set at or just below the core-mantle bound-

ary (CMB; ∼2890 km), where we set the tangential components of H
to zero. As in U&S, here we assume that the equatorial ring current

is the primary source of the geomagnetic variations, approximat-

ing the inducing sources of Dst-type by a P0
1 spherical harmonic

(e.g. Banks & Ainsworth 1992). The source is specified at the upper

boundary of the computational domain, placed at a radial distance

from the Earth’s surface of r = 10 R e, where Re is the Earth’s radius.

At this distance, secondary magnetic fields induced by the presence

of the conductive Earth are damped out to <10−3 of the external

field intensity and may be considered negligible (U&S, Appendix).

2.3 Global geomagnetic responses

According to the geomagnetic depth sounding (GDS) on a point

method the scalar c response (Banks 1969; Schmucker 1970; Schultz
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& Larsen 1987) at a single observatory and a single angular fre-

quency ω may be defined as

c(ω) = a tan(θ )

2

Hr (ω)

Hθ (ω)
, (5)

where a is the radius of the Earth in metres, ω is the angular fre-

quency, θ is geomagnetic colatitude in radians, H r is the vertical

component of the magnetic field pointing downwards to the centre

of the Earth, and H θ is the colatitudinal component pointing to mag-

netic south. This definition of c response was originally devised for a

radially symmetric Earth under the assumption of a P0
1-form external

source. The term tan (θ ) in (5) compensates for the spatial structure

of the source, so the c response would be the same everywhere on

the surface of a 1-D spherical Earth. The c response has units of

length and a positive real part, and provides a convenient means to

estimate depth of penetration of the externally induced fields into

the Earth’s interior. However, once the spherical symmetry assump-

tion is violated, H r will not in general be zero at the equator, and

the singularity of tan (θ ) at θ = 90◦ makes the c response undefined

at this colatitude. We avoid the singularity by leaving out the source

field colatitude compensation and work with c ratios,

cr (ω) = a

2

Hr (ω)

Hθ (ω)
, (6)

rather than the standard c responses. In fact, for actual data the source

compensation term tan (θ ) multiplies both the data and the standard

deviation, and thus exactly cancels out in the penalty functional (1).

In the same way we modify the d responses of Fujii & Schultz (2002)

to d ratios

dr (ω) = a

2

Hφ(ω)

Hθ (ω)
, (7)

where H φ is the longitudinal component of the magnetic field point-

ing to magnetic east. This component is zero if the mantle is 1-D

and the source is zonal. Therefore, non-zero values of d ratios arise

under such excitation only in the presence of lateral conductivity

heterogeneities. Here we consider explicitly inversion of c and d ra-

tios. Extension to treat other possible sorts of long period EM data

would be straightforward.

2.4 Model parametrization

The region from 12.65 km depth to the CMB is subdivided vertically

into layers (generally, 8–20), with electrical resistivity in each layer

parametrized using spherical harmonics,

log10 ρk(θ, φ) = a0
0 +

L∑
l=1

[
a0

l Pl (cos θ )

+
[ l∑

m=1

am
l cos(mφ) +

−l∑
m=−1

am
l sin(mφ)

]
Sm

l (cos θ )

]
, (8)

where Sm
l are Schmidt semi-normalized associated Legendre func-

tions (Schmidt 1895), and k is the layer index. The corresponding

section of the model parameter vector can be written as

m(k) = {
a0

0 , a0
1 , a1

1 , a−1
1 , a0

2 , a1
2 , a−1

2 , a2
2 , a−2

2 . . .
}
. (9)

The resistivity of the uppermost 12.65 km is kept fixed, unless

otherwise specified, it is based on a near-surface conductance map

(S-map), provided by A. Kuvshinov (personal communication,

2004), resampled on to the numerical grid.

In practice, the model covariance is designed to penalize large de-

viations from the starting model parameters, and other features such

as large jumps between neighbouring layers and higher order terms

that correspond to finer detail in the model. The standard approach

(e.g. Rodi & Mackie 2001; Haber et al. 2004) is to regularize directly

in terms of C−1
m , that is often easy to implement. In this case, how-

ever, the model norm (3) has an unbounded eigenvalue spectrum,

making the overall penalty functional very poorly conditioned, and

potentially difficult to minimize without pre-conditioning. On the

other hand, the model covariance operator Cm : R
M → R

M could

be considered a smoothing operator.

Since Cm is symmetric and positive-semidefinite, there is a sym-

metric invertible linear operator C1/2
m such that Cm = C1/2

m C1/2
m .

Setting

m̂ = C−1/2
m (m − m0), (10)

the expression (1) for the least-squares penalty functional may be

rewritten in terms of m̂:

R(m̂) = [
ψ

(
C1/2

m m̂ + m0

) − d
]H

C−1
d

[
ψ

(
C1/2

m m̂ + m0

) − d
]

+ λ m̂Tm̂. (11)

After minimizing (11) over m̂, the transformation m = C1/2
m m̂ +

m0 takes us back into the space of the original model parametriza-

tion. The minimizers of (11) and (1) are identical, but formulated as

in (11) the inverse problem is regularized in the sense of Tikhonov

(1963). Thus, by solving the problem in the space of m̂, we achieve

pre-conditioning comparable to that used by Rodi & Mackie (2001)

or Haber et al. (2000) at no additional computational cost. Note that

this scheme only requires the smoothing operator C1/2
m . The corre-

sponding inverse, which may be very difficult to implement, is never

required.

The model covariance is implemented as a combination of hori-

zontal and vertical smoothing operators, CH and CV , such that the

symmetric ‘square root’ model covariance is,

C1/2
m = CV CH CV . (12)

Here, CH implements multiplication by cl = l−α/2, α > 0, and

downweights the effect of higher order spherical harmonic terms.

Regularization across layer boundaries is implemented by operator

CV , which acts on a vector of parameters for a fixed (l, m) harmonic

across the layers. In our implementation,

CV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
1−β1

2
1−β1

2
β2

1−β2

2
0

1−β2

2
β3

. . .

0
1−βn−2

2
βn−1

1−βn−1

2
1−βn−1

2
βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

with 0 ≤ β i ≤ 1, i = 1, . . . n. Smoothing between layers i and i + 1

may be turned off by setting β i = 1.

2.5 Non-linear conjugate gradient technique

We seek the inverse solution by an iterative process of minimizing

(1) for a fixed value of λ, then reducing λ (by a factor of 10) when

the misfit Rd stops decreasing. The process is terminated when the

target data misfit is achieved (generally, 1 for the normalized misfit)

or when reduction of data misfit stalls.

For a fixed damping parameter λ, the minimization of the penalty

functional (11) is achieved by the non-linear Polak-Ribière conju-

gate gradients technique with line search based on a secant method.
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The Hessian of the penalty functional is approximated by first deriva-

tives and substituted in the Taylor’s expansion to estimate the line

search step size parameter. The line search direction is recomputed

and the line search performed repeatedly until the norm of the gra-

dient is lower than some threshold. Our implementation follows

mostly Press et al. (1992) and Shewchuk (1994).

The NLCG approach requires evaluation of both the penalty func-

tional and the gradient of the penalty functional with respect to the

model parameters at each step of the iterative process. From (11), it

follows that[
∂ R

∂m̂

]T

= 2 Re

([
∂ψ

∂m̂

]H

C−1
d

[
ψ(C1/2

m m̂ + m0) − d
]) + 2λ m̂.

(14)

Here, ∂ψ/∂m̂ is the Jacobian of the forward modelling operator,

that is, a complex N × M matrix of data sensitivities, where N is

the number of data, and M is the dimension of the model parameter

space. It can be seen from eq. (14), that the NLCG approach re-

quires a calculation of the product of the (adjoint) Jacobian with the

normalized residual. Computation of this product does not require

the full Jacobian matrix. Representation of the Jacobian as a com-

bination of linear operators allows for an efficient implementation

of this calculation, as we now describe.

3 S E N S I T I V I T Y C A L C U L AT I O N S

3.1 Formulation of data sensitivities

The model response ψ j(m) for a single observation dj can be written

ψ j = ψ j (m) = ϕ j {γω,s[η(m)]}, (15)

where η(m) = ρ is the electrical resistivity on the grid; γ ω,s(ρ) = h
is the forward solver, that maps the grid resistivity to the magnetic

field components on the grid, for frequency ω and source field s;

and ϕ j (h) = ψ j denote the data functionals.

Using the chain rule:

∂ψ j

∂m
= ∂ψ j

∂h

∂h

∂ρ

∂ρ

∂m
, (16)

where ∂ψ j/∂m is a row vector that relates a variation in the data

functional to small perturbations in each of the model parameters

mi , i = 1, . . . M . The full Jacobian ∂ψ /∂m, computed for a single

frequency ω, is an N × M matrix, composed of these row vec-

tors. Note also that in order to compute the gradient of the penalty

functional using eq. (14) we need to apply the operator[
∂ψ

∂m

]H

= ∂ρ

∂m

T ∂h

∂ρ

H ∂ψ

∂h

H

(17)

to the normalized residual vector.

3.2 Generalized forward problem with arbitrary forcing

The computation of ∂h/∂ρ is the core of the sensitivity calculation.

Suppose we introduce a small perturbation δρ into the Helmholtz

eq. (4). Then, the perturbed equation

∇ × (ρ + δρ)∇ × (H + δH) + iωμ0(H + δH) = 0 (18)

can be linearized to obtain a system of equations for δH,

∇ × ρ(∇ × δH) + iωμ0δH = −∇ × δρ(∇ × H) (19)

Figure 1. Spherical staggered-grid finite difference formulation: illustration

of electric and magnetic field components in a single H-cell.

with homogeneous boundary conditions. Thus, to obtain δH (i.e. to

calculate sensitivities) we need to solve the forward problem with a

general interior source, which depends on the unperturbed magnetic

field H and on δρ.

This requirement, together with the need to solve the adjoint sys-

tem as part of the implementation of (17), suggests a more careful

look at some details of the U&S numerical scheme.

3.3 Staggered-grid finite difference formulation, revisited

To discuss numerical computation of the derivatives in Section 3.1,

it is necessary to refer to the staggered-grid discretization of U&S.

Consider an H-cell bounded by H-faces (Fig. 1). The magnetic field

components are defined on H-edges (edge centres). Electric fields

are defined on H-faces (which correspond to the centres of E-edges).

Length elements lr, lφ and lθ are defined on H-edges. We can also

define elementary areas Sr, Sφ and Sθ on both the H-faces and on

the H-edges (which correspond to the E-faces). The latter are the

areas of surfaces perpendicular to the H-edges, passing through their

centres. We also define the (i, j, k) E-prism to be the prism centred

at the (i, j, k) H-node, so that we can refer to (i, j, k) E-edges and

E-faces in much the same way as those of H-prisms.

In the global spherical staggered-grid construction some com-

ponents are undefined (such as the φ-components at the poles, or

the radial components at the lower boundary of the domain) and

some are redundant (such as the radial components at the poles).

We consider the well-defined, ‘unique’ components in the centres,

on the edges and on the surfaces of the H-prisms. To be more precise

(and succinct) in description of the linear algebraic formulation of

the discrete problem, we introduce the following finite-dimensional

vector spaces:

E ≡ vector space of complex components defined on each

unique H-edge on the grid.

F ≡ vector space of complex components defined on

each unique H-face of the grid (or, equivalently, on each
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NLCG technique for global EM induction 369

unique E-edge, including those corresponding to the boundary

surfaces).

G ≡ vector space of real components defined on the H-prisms.

To distinguish between interior and boundary components of the

discrete field values we will use the subscripts i (for interior) and

b (for boundary). Thus the full magnetic field vector can be repre-

sented as

h =
[

hi

hb

]
, (20)

and Ei and Eb are complimentary subspaces of E, consisting of

interior and boundary edges, respectively.

As in U&S the boundary components are not solved for, and they

may thus be eliminated from the system of discretized Maxwell’s

equations (eqs 18–19 of U&S) to yield

Aρ,ωDlhi = −Bρhb = −Bρb, (21)

where Dl is a diagonal operator which multiplies by the interior

H-edge length elements, and b ∈ Eb denotes the vector of boundary

conditions (cf. eq. 20 in U&S). The RHS of the equation is defined by

the mapping Bρ from the boundary H-edges of the grid to the interior

H-edges. This mapping depends only on ρ and effectively produces

a forcing on interior nodes from the specified boundary data. The

operator Aρ,ω : Ei → Ei is symmetric and real everywhere except

along the diagonal, making it possible to solve the linear system

of equations efficiently, using a variant of biconjugate gradients

(Uyeshima & Schultz 2000; Toh et al. 2002).

3.4 Derivation of data sensitivities

The linearized relationship between a perturbation δρ in the model

electrical resistivity and the respective perturbation δhi in the

magnetic field solution can be described by a discrete operator

J : G → Ei, such that δhi =J δρ. Clearly, J is an |Ei| × |G| matrix,

where |·| denotes dimension of the space. To formally evaluate J,

consider the perturbed numerical forward solver,

Aρ+δρ,ωDl (hi + δhi) = −Bρ+δρb, (22)

and employ the identities (see the Appendix)

Aρ+δρ,ω = Aρ,ω + Aδρ,0 (23)

and

Bρ+δρ = Bρ + Bδρ (24)

to obtain

Aρ,ωDlδhi = −(Aδρ,0Dlhi + Bδρb). (25)

Note that the RHS depends linearly on δρ. Therefore, it is possible

to rewrite the system (25) as

Aρ,ωDlδhi = −Ehδρ, (26)

where Eh : G → Ei is a complex linear operator that depends on

hi. The derivation of operator Eh is also found in the Appendix.

From (26), we obtain a formal expression for the Jacobian of the

forward solver:

J = ∂hi

∂ρ
= −D−1

l A−1
ρ,ωEh . (27)

We complete the setup with expressions for Jacobians of the

model parametrization and the data functionals, namely, ∂ρ/∂m and

∂ψ /∂hi. Assuming data are only in the interior of the domain, data

functionals of interest all have the form ψ j(hi), where ψ j is a simple

(but non-linear) function of hi ≡ hi(xj), that is, the triplet (hφ , hθ ,

hr) at x j = (φ, θ , r ), the location of observation j. Note that ψ j also

depends on frequency. In general, we may write

hi(x j ) = LT
j hi, (28)

where Lj is a real sparse |Ei|×3 matrix, that represents bilinear spline

interpolation from the numerical grid (H-edges) to xj. Decomposing

the sparse matrix Lj as L j = (Lφ

j , Lθ
j , Lr

j ), we have

g∗
j = ∂ψ j

∂hi
= ∂ψ j

∂hφ

(
Lφ

j

)T + ∂ψ j

∂hθ

(
Lθ

j

)T + ∂ψ j

∂hr

(
Lr

j

)T
. (29)

For example, for the specific case of c response field ratios (cf. eq. 6),

∂ψ j

∂hφ

= 0,
∂ψ j

∂hθ

= −a

2

hr

h2
θ

,
∂ψ j

∂hr
= a

2

1

hθ

(30)

are used in (29), with the magnetic field (hφ , hθ , hr) calculated using

(28).

Finally, define P : R
M → G through the linear relation δρ =

P δm and set P̂ = P C1/2
m so that δρ = P̂ δm̂. For parametrization in

the form

log10 ρ(φ, θ, r ) =
M∑

i=1

mi fi (φ, θ, r ) (31)

for some set of basis functions f i and coefficients mi, for the prism

centred at (φ, θ , r), the corresponding components of the operator

P are

pi (φ, θ, r ) = ∂ρ

∂mi
(φ, θ, r ) = ρ(φ, θ, r ) fi (φ, θ, r ) ln(10). (32)

By denoting by ψ(m) the N ω × 1 vector with components ψ j(m)

for all sites and for a fixed frequency ω, and letting Gω be the

|Ei| × Nω complex matrix whose jth column is gj, the full Jacobian

of the mapping from model parameters to data for frequency ω may

then be expressed as

∂ψ

∂m̂
= G∗

ωJP̂, (33)

where J is given by eq. (27).

3.5 Direct and adjoint approaches

Denoting the vector of weighted residuals as

r̃ω = C−1
d [ψω(m) − d]. (34)

the discrete equivalent of the adjoint gradient expression (14) is[
∂ Rω

∂m̂

]T

= 2 Re (P̂TJ∗Gω r̃ω) + 2λ m̂. (35)

To evaluate (35) we only need to perform the forward computations

twice for every frequency: once with the direct forward solver to

evaluate h, and a second time with the adjoint solver to implement

J∗Gω r̃ω and evaluate the derivative.

The adjoint computations involve solving a slightly different sys-

tem of equations, which requires only minimal modifications to the

original system. Indeed, since inversion and conjugation may be

freely interchanged for finite-dimensional linear operators,

J∗ = −E∗
h(A∗

ρ,ω)−1D−1
l . (36)

The only complex components of Aρ,ω are due to the −iωμ0 term

on the diagonal. We use

A∗
ρ,ω = Aρ,−ω (37)
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to obtain

J∗ = −E∗
hA−1

ρ,−ωD−1
l . (38)

Then, evaluation of the derivative in the adjoint formulation requires

solving the linear system

Aρ,−ωh̃i = D−1
l f̃ (39)

for h̃i, where f̃ = Gω r̃ω.

Thus, the discrete adjoint corresponds to a variant of the system of

eq. (21) for the forward problem. Furthermore, the core numerical

forward solution developed by U&S may be used, with relatively

minor modifications (Appendix, Section A5), to solve the adjoint

system. The adjoint approach allows us to evaluate the derivative

at the cost of a single run of the forward solver, independent of

the complexity of the model space. This allows us to consider far

more detailed parametrizations than would be practical with a direct

approach.

4 S Y N T H E T I C DATA E X P E R I M E N T S

We demonstrate the convergence and resolution of the conjugate

gradient inverse solver based on the adjoint method (Sections 2.5

and 3.5) on a series of synthetic data examples.

The logarithmic resistivity perturbation is modelled as a spheri-

cal harmonic expansion in geomagnetic coordinates with 12 layers.

Only the upper eight mantle layers are allowed to be heterogeneous,

while the four layers from 1600 km depth to the CMB are assumed

to be homogeneous, but free to vary. This assumption is justified by

the fact that deeper structures, if present, cannot be easily resolved

with external EM induction methods due to contamination by sec-

ular variations of the Earth’s main field. The layer boundaries are

defined to allow stronger radial variations in electrical resistivity in

the upper to mid-mantle, and to accommodate the standard mantle

discontinuities. We invert for the 3-D perturbations around the prior

1-D structure (Fig. 2).

The synthetic data, comprised of c and d response ratios

(Section 2.3), is designed to resemble the global observatory data

set compiled by Fujii & Schultz (2002) (henceforth F&S) in terms

of the observatory distribution and frequency range, as well as in

terms of the measurement errors. The effects of these on the reso-

lution of the model at various depths is studied by varying each of

these factors in turn and computing independent inverse solutions

for each case.

While issues related to source field approximation certainly re-

quire attention, they are beyond the scope of this work. We eliminate

Figure 2. The prior model used for the synthetic inversions is based on Kuvshinov & Olsen (2006). The green vertical lines indicate layer boundaries for the

model parametrization in km. A 12.65 km sheet of averaged near-surface conductance is included in the prior unless otherwise specified.

Figure 3. Mid-latitude (−60◦ ≤ θ ≤ 60◦) observatory locations used for synthetic data generation (127 in total). The green triangles are the 54 Fujii & Schultz

(2002) geomagnetic observatory locations. The red solid dots are the 35 IAGA geomagnetic observatory locations as of 2006 July, distinct from the F&S

observatories. The blue open circles denote a set of 38 IRIS GSN observatory locations as of 2006 October that are over 1100 km away from any of the existing

geomagnetic observatories and from each other.
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NLCG technique for global EM induction 371

Figure 4. Example convergence rate, plotted for the synthetic inversion reconstructing degree 5 order 3 conductivity perturbation in layer 6 using synthetic

data at REG24×16 locations. The left-hand plot shows the misfits due to c and d ratios, respectively. The right-hand plot shows the corresponding model norm

(black) before weighting by the damping parameter. The dashed red line corresponds to the total value of the penalty functional, which is the sum of the model

norm (weighted by the damping parameter λ) and the averaged misfit. The solid vertical lines denote the points at which the damping parameter has been

updated. Note that at these points the penalty functional is effectively redefined, and so the plotted curve is discontinuous.

Figure 5. Synthetic degree 5 order 3 checkerboard model in geomagnetic

coordinates plotted for comparison with the resolution kernels in Figs 6–

8, with the same scaling and projection. Note that only one hemisphere is

plotted.

additional complications arising from the unknown source field

structure by both generating the synthetic data and inverting it under

the assumption of a P0
1 source. This assumption clearly breaks down

at higher latitudes (see, for example, F&S’s method of assimilating

higher-latitude data influenced strongly by the auroral conjugate

current systems). For the present examples, we deal with the issue

more simply, by restricting attention to mid-latitude observatory

distribution, with latitudes not higher than ±60◦ geomagnetic.

Fig. 3 presents three of the four global observatory distributions

used for the generation of synthetic data: the F&S mid-latitude ob-

servatories (54 locations), the F&S data set combined with the ad-

ditional mid-latitude INTERMAGNET (joint effort of IAGA and

IUGG Coles et al. 1990) observatories as of 2006 July (89 loca-

tions), and both sets combined with an additional 38 hypothetical

geomagnetic observatory locations. These correspond to a set of pri-

marily island based IRIS global broad band seismometers, providing

geographical coverage in areas distant from any existing geomag-

netic observatory, and bringing the total to 127 locations. Addition-

ally, we also consider an even more hypothetical regular grid of

observatories located between −56◦ and 56◦ geomagnetic latitude,

with the latitudinal distance between the adjacent locations being

16◦ and longitudinal 24◦, starting from zero geomagnetic longitude

(120 locations in total). Henceforth, we shall refer to these obser-

vatory distributions as F&S, F&S+IAGA, F&S+IAGA+GSN and

REG24×16, respectively.

In order to obtain more realistic errors in the synthetic data, we

have performed a linear regression analysis of the F&S absolute

data errors, converted to the errors δ r in the field ratios of (6) and

(7). The two parameter model

δr = β0 + β1 tan

∣∣∣∣π2 − θ

∣∣∣∣, 0 < θ < π, (40)

fits the data adequately for a range of frequencies, with the R2 statistic

approximately 0.8. For the field data, both regression coefficients

span the range 30–100 km, depending on the frequency and the

range of latitudes considered; in general, errors in c ratios increase

more rapidly with latitude than the errors in the d ratios. The realistic

averaged values of these parameters for the frequency range of F&S

(periods of ∼5–106 d) are approximately β 0 = 60 km, β 1 = 80 km

for the c ratios, and β 0 = 50 km, β 1 = 30 km for the d ratios. These

are the values we have used in our synthetic experiments. For some

experiments, we model hypothetical data of better quality using

the value of β 0 = 10 km for both types of responses.

The resolution analysis performed in this paper was based on

inversions of both c and d field ratios. This choice was justified by

comparison of the quality of the inverse solutions obtained with the

c ratio data only to that of the solutions computed using both c and d
ratios. The inverse solutions obtained with the mixed data set exhibit

better resolved anomalies with sharper boundaries.

Most of the experiments described below have been performed

with a 36 × 18 × 52 grid, including seven air layers. This cor-

responds to 10◦ × 10◦ in tangential directions. This grid size is

sufficient to model the large-scale mantle inhomogeneities consid-

ered in this paper, and at the same time is computationally tractable.

The near-surface conductance, associated with the oceans and ma-

rine and terrestrial sedimentary cover, has been averaged to the

same grid. The inversions were performed using the same grid and

the same vertical layering as those used for preparation of the syn-

thetic data, unless otherwise specified.

Tests were first performed to assess the sensitivity of the inverse

solution to this near-surface conductance. Synthetic data were gen-

erated on the REG24×16 observatory grid for a degree 5 order 3

checkerboard perturbation in the upper mantle (12.65 – 670 km

depths), with the near-surface S-map above 12.65 km depth super-

imposed. A random distortion of amplitude 20 per cent in the 10◦ ×
10◦ S-map was then generated, and this was imposed as a fixed

surface conductance in the inversion of the synthetic data. The
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Figure 6. The resolution kernel for degree 5 order 3 conductivity perturbation on a single layer. Each column k corresponds to a single inverse model, obtained

by reconstructing the perturbation on layer k. The solutions were obtained with both horizontal and vertical smoothing and with 13 sample periods in the range

5.12–107 d.

error introduced into the inverse model solution by using the incor-

rect surface conductance was found insignificant for the frequency

range of the F&S data. However, the inverse solution obtained with

the surface conductance totally omitted from the inversion has a

notably more conductive upper mantle above ≈410 km depth, par-

ticularly below the oceans. The S-map has thus been included, but

assumed to be correct, in all of the examples discussed below.

5 R E S U LT S

5.1 Vertical resolution

The vertical resolution of the conjugate gradient inverse solution has

been tested by a series of computational experiments with idealized

data. Synthetic c and d responses were generated on the REG24×16

grid for eight models, corresponding to a degree 5 order 3 checker-

board perturbation around the prior model (Fig. 2) within each of the

eight uppermost layers (12.65–1600 km). To specifically address the

issue of vertical resolution, we inverted unrealistically accurate data

with least-squares fitting parameters of expression (40) adjusted to

β 0 = 10, β 1 = 80 for c ratios and β 0 = 10, β 1 = 30 for d ratios.

For inversion, we assumed a degree and order 6 parametrization in

the top eight layers above 1600 km, with 1-D structure below this

depth. The inversions were regularized by smoothing as described

in Section 2.4, with the smoothing parameter values α = 0.5, β =
0.8.

Plotted in Fig. 4 is a typical rate of convergence of a synthetic in-

version based on degree and order 6 spherical harmonic parametriza-

tion. In this case, the total number of variable parameters is 396,

corresponding to 49 parameters for each of the eight heterogeneous

layers and a single parameter for each of the four homogeneous

layers. In this example, as well as in other examples discussed in

this paper, the starting value of the damping parameter was set to

1. The damping parameter was updated (λ → λ/10) when the norm

of the gradient of the penalty functional decreased to 0.01 of its

initial value. The procedure was stopped when the averaged mis-

fit was close enough to 1. The number of function (and derivative)

evaluations per line search was set to 3, and a full inversion typically

required an order of 50 line searches.

The results of these inversions for 13 sample frequencies spaced

evenly within the F&S period range (5.12–107-d periods) are pre-

sented in Fig. 6. Here, each column corresponds to the upper eight

layers of the inverse solution for each of the eight test cases, so the

8 × 8 matrix of subplots can be viewed effectively as a vertical

resolution matrix, for the large-scale checkerboard perturbation of

Fig. 5. For clarity of presentation, the perturbations around the prior

in the synthetic model and in the inverse solutions are divided by
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NLCG technique for global EM induction 373

Figure 7. The resolution kernel for degree 5 order 3 conductivity perturbation on a single layer. Each column k corresponds to a single inverse model, obtained

by reconstructing the perturbation on layer k. The solutions were obtained without the vertical smoothing and with 13 sample periods in the range 5.12–107 d.

the magnitude of the synthetic perturbation (±2.5 in log10ρ) and

plotted in the range [−1, 1]. We plot only the section of the model

corresponding to one hemisphere (due to the longitudinal symme-

try of the checkerboard model, results for the other hemisphere are

identical).

Fig. 6 indicates that the spatial resolution of these large-scale fea-

tures is very good (compare with the synthetic structure in Fig. 5)

from the bottom of the transition zone into the lower mantle to a

depth of about 1600 km. At these depths the inverse solution conduc-

tivity has a well defined peak in the correct layer. For perturbations

in the transition zone, peaks are more poorly defined in the inverse

solutions. In the upper-mantle resolution becomes very poor.

In Fig. 7, we consider inversions of the same limited frequency

data set, but now with vertical smoothing turned off in the model

covariance (that is with β = 1.0). Without the vertical smoothing the

solutions become erratic, with peaks misplaced for perturbations in

all layers above the top of the lower mantle. Although the smoothing

does smear the conductivity vertically, comparison of Figs 6 and 7

shows clearly that vertical smoothing is justified.

In Fig. 8, we plot the results of vertically smoothed resolution

experiments with synthetic data covering a broader range of periods

(14 bands, with periods sampled regularly from 0.2 to 107 d). This

expanded period range would correspond to including daily varia-

tion data in the inversion. Although in practice such shorter period

data would be dominated by shorter wavelength non-zonal iono-

spheric source fields, for purposes of our synthetic data experiment

we retain the P0
1 source approximation. As Fig. 8 shows, inclusion of

such shorter period data would provide reasonably good resolution

of large-scale features throughout the upper mantle.

5.2 Horizontal spatial resolution

To assess the effect of the horizontal distribution of the data on

resolution we first consider, as in Section 5.1, a degree 5 order

3 checkerboard perturbation in the shallowest well-resolved layer

(670–900 km), and attempt to reconstruct it with data in the pe-

riod range 5.12–107 d for different observatory distributions. We

also consider a degree 8 order 4 checkerboard perturbation on the

same layer, to see how the spatial distribution of the data affects the

resolution of these slightly finer features. The two synthetic mod-

els are shown at the top of Fig. 9. These experiments have been

performed with the smoothing parameters α = 0.5, β = 0.8. To

test both the fidelity of the model reconstruction and the efficiency

of the regularization, we overparametrize the models. The degree

5 order 3 synthetic example has been inverted with degree and order

6 parametrization, while the degree 8 order 4 example used a degree

and order 9 parametrization in the inversion. In this experiment, as

opposed to the vertical resolution test in Section 5.1, we inverted

data with a realistic noise level similar to that in the F&S data set
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Figure 8. The resolution kernel for degree 5 order 3 conductivity perturbation on a single layer. Each column k corresponds to a single inverse model, obtained

by reconstructing the perturbation on layer k. The solutions were obtained with both horizontal and vertical smoothing and with 14 sample periods in the range

0.2–107 d.

(regression parameters β 0 = 60 km, β 1 = 80 km for the c ratios,

and β 0 = 50 km, β 1 = 30 km for the d ratios).

Fig. 9 presents the inverse solutions obtained with the

REG24×16, F&S+IAGA and F&S data distributions versus the

respective synthetic models. Only the target layer (670–900 km)

in the inverse solution is shown. To give an idea of the leakage of

the anomalies into the neighbouring layers, we also plot the total

conductance for the target layer and the layers above and below

(520–1600 km) in Fig. 10.

It is immediately notable from the degree 5 order 3 inverse solu-

tion obtained by inverting the REG24×16 data distribution (Fig. 9)

that the amplitude of the perturbation is approximately half the size

of the synthetic used to generate the data. This was not the case in

the vertical resolution experiments, performed with unrealistically

small data errors. Thus we conclude that unless the data quality is

improved the inversion does not fully recover the magnitudes of the

anomalies in the target layer. However, comparison of Fig. 9 with

the total conductance plotted in Fig. 10 shows that the reduction in

amplitude is largely due to vertical smearing of the conductivity into

adjacent layers.

It is instructive to compare the results obtained with different

data distributions. We note that areas with large gaps in observa-

tory coverage (such as the southern hemisphere, particularly be-

neath South America, in the F&S distribution of observatories) have

weak anomalies in the inverse solutions. Not surprisingly, this be-

comes even more of an issue for shorter spatial scale features. Some

smaller anomalies in the areas of poor observatory coverage tend to

get aliased to large-scale features in the data gap (such as the posi-

tive anomalies beneath North Australia and off the east coast of the

Americas); others are missed (such as the anomalies beneath South

America, Northwest Africa and everything south of Australia).

The discussion above relies on the assumption that the vertical

resolution does not depend a great deal upon the observatory cover-

age. We explore this issue further by plotting the inverse solutions

as a function of depth in the spherical harmonic domain for different

observatory distributions (Fig. 11). It can be seen that the magnitude

of the reconstructed perturbation increases with better geographic

data coverage, going from ∼30 per cent of the synthetic perturbation

to ∼60 per cent, while the total error decreases in both the target

layer and the deeper layers. Thus, geographic data coverage is an-

other factor influencing vertical resolution and the propagation of

errors to deeper layers.

We conclude that potentially important large-scale features near

the top of the upper mantle will be missed in the areas of poor

data coverage; however, in areas where the observatory data are

available, such features should be laterally resolved, even with a

sparse and irregular global data set such as F&S (see e.g. Fig. 9).

If all of the current INTERMAGNET observatories were added to
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Figure 9. Inverse solutions for a range of data distributions REG24×16, F&S+IAGA and F&S (as described in Section 4) compared to the checkerboard

parametrizations degree 5 order 3 (column 1) and degree 8 order 4 (column 2) on the target layer 670–900 km depth. The region above the grey borderline in

the bottom right-hand figure contains the anomalies that are reasonably well-resolved, although underestimated, with the F&S data and error distribution.

this set (F&S+IAGA), a number of gaps, especially in the southern

hemisphere, would be filled in.

5.3 A more realistic example based on the SPRD6 shear

wave velocity model

To construct a more realistic synthetic example, we start with the

Ishii & Tromp (2001) shear wave velocity model, based on seis-

mic normal-mode data and the geoid. This model is parametrized

with spherical harmonics to degree and order 6 with Chebyshev

polynomials in the vertical. We mapped this to a layered model af-

ter rotation of the spherical harmonic coefficients to geomagnetic

coordinates using a Wigner D-matrix (Hillery et al. 1984). The co-

efficients in the upper eight layers of the model (with layers defined

as in Fig. 2) were then rescaled to correspond to perturbations in

log-conductivity via

log10

(
ρ

ρ0

)
= vS

√
d/10, (41)

where d is the mid-layer depth in metres. The scaling in (41) was

chosen to make the amplitude of the perturbations realistic, in the

sense that the deviation from spherical symmetry in the c responses

resulting from this perturbation is comparable to that seen in the F&S

data set. Below 1600 km depth the mantle has been parametrized

with a 1-D layer structure. Near-surface electrical conductivity is

included as in the checkerboard tests.

The synthetic model was then perturbed by finer scale random

features (up to degree and order 14 spherical harmonics) and syn-

thetic data were generated by solving the forward problem on 10◦ ×
5◦ grid. The synthetic models, with and without the random higher

order perturbation, are shown in the first two columns of Fig. 12. The

period range for these experiments was as in F&S, and observatory

distributions, and data errors were as described in Section 4. Fig. 12

(columns 3 and 4) shows the reconstructed perturbations around the

prior, obtained with a restricted degree and order 6 parametriza-

tion with vertical and horizontal smoothing (α = 0.5, β = 0.8).

Computations for the inversion were done on the coarse 10◦ × 10◦

grid. By comparing the last three columns in Fig. 12 we see that

the large-scale features of the synthetic model are reasonably well

reconstructed at the mid-mantle depths (just where vertical resolu-

tion was reasonably good, Fig. 6) even with the irregular and sparse

observatory distribution of F&S. The additional observatories from

the F&S+IAGA+GSN have relatively minor impact on the inverse

solution at the top of the upper mantle, although they do improve

resolution of smaller scale features at all depths, and yield a sub-

stantially more accurate reconstruction in mid- to lower mantle. In

spite of the presence of smaller scale conductivity perturbations of

substantial amplitude in the synthetic model used to generate the

data, the inversion reproduced the underlying large-scale features

reasonably well.

6 C O N C L U S I O N S

An adjoint NLCG inversion technique for global EM has been

developed and implemented. This technique is computationally

tractable at the modest resolution justified by the sparse observatory
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Figure 10. Conductance G (Siemens) for the depths 520–1600 plotted on the logarithmic scale. The inverse solutions obtained with the data distribu-

tions REG24×16, F&S+IAGA and F&S are compared to the conductance of the respective checkerboard (670–900 km) parametrizations degree 5 order

3 (column 1) and degree 8 order 4 (column 2).

Figure 11. Inverse solutions for a range of data distributions REG24×16, F&S+IAGA and F&S for the degree 8 order 4 checkerboard parametrization. The

solid red line in the left-hand figure indicated the resolved degree l = 8 m = 4 spherical harmonic coefficient versus layer number. The red line in the right-hand

figure corresponds to the root sum of squares of the erroneously resolved coefficients of the same degree. The dashed green line shows the zero degree and

order coefficient. The dashed blue line shows the root sum of squares of the erroneous coefficients for l 
= 8. Ideally, the recovered perturbation would be 1 in

layer 6 and zero otherwise.
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Figure 12. Two inverse solutions (columns 3 and 4) obtained by reconstructing the rescaled and randomly perturbed Ishii & Tromp (2001) SPRD6 S-wave

model (column 1), using a degree and order 6 parametrization and observatory distributions F&S+IAGA+GSN and F&S. The corresponding rescaled degree

and order 6 SPRD6 model is also shown (column 2). Only deviations from the prior are plotted. The inverse models fit the corresponding synthetic data sets

with rms values of approximately 1.09 for c response ratios and 1.00 for d response ratios.

coverage: an inversion requires 2–3 d on a typical desktop work-

station to complete. An extensive resolution analysis of the method

has been performed.

The experiments described in Section 5.1 suggest that increasing

the frequency bandwidth of the observatory depth soundings to in-

clude periods in the daily variations band yields a very substantial

improvement in resolution of upper-mantle conductivity structure.

Getting reliable response functions at these shorter periods will be

a challenge, because source structure is much more complex and

variable in time. However, there are good reasons to suppose that

lateral variations in upper-mantle conductivity might be substantial

(e.g. Xu et al. 1998; Toffelmier & Tyburczy 2007), so serious effort

to obtain more reliable estimates of induction responses at these

periods is well justified.

We have shown in Section 5.2, that the observatory distribution

and period range of Fujii & Schultz (2002) resolves large-scale

(few thousand kilometres) conductivity variations, from the lower

part of the transition zone to ∼1600 km depth. Vertical resolution

length scales in this depth range are 300–500 km. In areas of the

globe where the data distribution is sparse (in the ocean basins,

and the southern hemisphere) features are washed out, or aliased to

larger scale structures. Our results reveal the geographical regions

in which the resolution of data sets similar to F&S is best, and those

in which the resolution is poor. This knowledge will be of use to

those interpreting inversions of magnetic observatory data sets, and

to those planning future observatory installations in remote areas.

By including a larger set of recently occupied INTERMAGNET

observatories both vertical and horizontal resolution is enhanced,

especially in areas such as South America, where the F&S data set

is particularly deficient. Additional, but at this time hypothetical,

observatories in the locations of 38 mostly island-based broad band

seismic observatories would result in modest further improvements

in resolution. Gains would probably be even greater at shorter wave-

lengths, which we did not investigate here.

In synthetic model experiments with shorter spatial wavelength

conductivity perturbations added (Section 5.3), large-scale structure

is still recovered with reasonable accuracy, giving confidence that

large-scale structure in the Earth may be recovered even with the

rather sparse data sets that are presently available. This gives at least

some confidence that inversion of data sets such as that of F&S, and

extensions, can reveal at least large-scale variations in conductivity

near the bottom of the transition zone and top of the lower mantle.
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A P P E N D I X A : E X P R E S S I O N S F O R T H E

F O RWA R D S O LV E R A N D T H E

JA C O B I A N I N T E R M S O F

E L E M E N TA RY O P E R AT O R S

It is possible to decompose the discretized Helmholtz operator into

a combination of elementary sparse matrices, acting consecutively

on the field vector. This may be done by constructing step by step

each of the operators required to solve numerically the system of

integral equations∮
H · dl =

∫ ∫
J · dS,∮

E · dl = −
∫ ∫

iωμH · dS,

J = σE. (A1)

equivalent to the vector Helmholtz equation (4, see also U&S). Here,

σ = 1/ρ.

We introduce discrete operators that represent mapping between

the spaces G, E and F, as defined in Section 3.2. In general, the

letter D for a matrix shall denote a square diagonal operator, with

a subscript to indicate the nature of the values on the diagonal (see

Table A1).

A1 Evaluating line integral
∮

H · dl

Let C : E → Fi denote the sparse matrix (with non-zero elements

± 1) which computes the signed sum of components on H-edges of

each prism, assigning the result to the corresponding H-faces. Both

interior and boundary H-edges map to the interior faces. Note, that

C may be viewed as the discrete implementation of the curl operator,

except that no length scales are involved—so that C is, effectively,

non-dimensional. The product CDl E h then implements the integral

operator
∮

H · d l locally around a face (Fig. A1), and current density

on the E-edge normal to this face is j = D−1

SF CDl E h.

Electrical resistivity is defined on H-cell centres, but on the

staggered-grid currents are naturally defined on H-faces (E-edges).

Define L : G → Fi to denote the operator that averages quantities

in adjacent cells to their common face, weighting by the perpendic-

ular cell length elements. This operator implements the resistivity

averaging used in U&S,

ρface = l+

l+ + l− ρ+ + l−

l+ + l− ρ−, (A2)

where ρ+ and ρ− correspond to the resistivities of adjacent cells, and

l+ and l− are, respectively, the perpendicular length elements in these

cells. We also introduce a diagonal operator DLρ : Fi → Fi, with the

values of ρ face =Lρ aligned along the diagonal. Then, the discrete

estimate of the electric field E =ρ faceJ is e = DLρD−1

SF CDl E h.
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Table A1. Diagonal operators defined on the staggered-grid.

Dl E : E → E Pre-multiplies by edge length elements on H-edges

Dl F : Fi→Fi Pre-multiplies by edge length elements on E-edges
DSF : Fi → Fi Pre-multiplies by surface area elements on H-faces
DSE : E → E Pre-multiplies by perpendicular surface area elements on H-edges
DLρ : Fi → Fi Pre-multiplies by ρ on H-faces
DρF : Fi → Fi Pre-multiplies by the weighted averages of ρ on H-faces
Dl : Ei → Ei Pre-multiplies by length elements. Acts on the interior

components only. Shorthand notation for Dl E
i

DS : Ei → Ei Pre-multiplies by perpendicular surface area elements.

Shorthand notation for DSE
i

Dj : Fi → Fi Pre-multiplies by the current density components j = D−1
SF CDl E h

Figure A1. Operator C can be used to evaluate the discrete approximation

of
∮

H · d l; value assigned to face is a signed sum as indicated, and points into

the diagram in accordance with the sense of integration around the contour.

A2 Evaluating line integral
∮

E · dl

Operator CT : Fi → E (the transpose of operator C) locally imple-

ments a signed sum over four H-faces, that contain an H-edge, in the

sense of integration around contour (Fig. A2). The discretization of

the line integral
∮

E · d l, which maps the electric fields back from

H-faces (E-edges) to H-edges, involves multiplication by CT Dl F .

Using the notation of eq. (A2), the length elements for E-edges may

be computed as (l+ + l−)/2.

Figure A2. Operator CT maps the values on the four adjacent faces onto

the centre edge of the ‘paddle wheel’, in accordance with the sense of in-

tegration around contour. This operator can be used to evaluate the discrete

approximation of
∮

E · d l.

However,
∮

E · d l is strictly only meaningful in the interior

of the computational domain, that is, on interior H-edges (Ei).

Partitioning

C ≡ (
Ci Cb

)
, (A3)

where Ci : Ei → Fi and Cb : Eb → Fi, the discretization can be

written CT
i Dl F e.

A3 Decomposition of Helmholtz operator

Defining DρF : F → F, such that

DρF = Dl F DLρD−1

SF , (A4)

and collecting all the pieces defined above, the discretized vector

Helmholtz eq. (4) can be written

CT
i DρF CDl E

[
hi

hb

]
+ iωμ0DSE hi = 0. (A5)

Noting eq. (A3), and moving the boundary components to the RHS,

we obtain(
CT

i DρF CiDl E
i

+ iωμ0DSE
i

)
hi = −CT

i DρF CbDl E
b

hb, (A6)

where hb =b is determined by the boundary conditions. By com-

parison with eq. (21), Dl ≡ Dl E
i

, we have

Aρ,ω = CT
i DρF Ci + iωμ0DSE

i
D−1

l E
i

, (A7)

Bρ = CT
i DρF CbDl E

b
. (A8)

A4 Using elementary operators to describe data

sensitivities

The identities (23), (24) and (37) follow easily from the above de-

compositions. To derive the expression for Eh (eq. 22), we note

that

Aδρ,0Dlhi + Bδρb = CT
i DδρF CDl E h. (A9)

Note that j = D−1

SF CDl E h ∈ Fi is just a vector. For L̃ : G → Fi such

that L̃δρ = Dl F Lδρ, recall the definition (A4) of DδρF to write

DδρF CDl E h = Dl F DLδρj = Dj L̃δρ, (A10)

where D j = diag (j), and the expression (A9) holds with the operator

Eh : G → Ei being

Eh = CT
i DjL̃. (A11)
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A5 Divergence correction

As evident from eq. (19), sensitivity calculations require solving a

generalized forward problem, equivalent to eq. (4) with a non-zero

interior forcing,

∇ × ρ(∇ × H) + iωμ0H = f. (A12)

Taking the divergence of both sides of eq. (A12) yields

iωμ0∇ · H = ∇ · f. (A13)

Thus, ∇ · H in general is no longer zero for the generalized problem.

Instead, the new identity (A13) should hold.

Numerically, denote the solution of the forward problem by

h̃i and the total interior forcing on the RHS by f (so that

Aρ,ωh̃i = f). Then we may use eqs (21) and (A13) to derive the

identity

∇ · (
D−1

l h̃i

) + i
∇ · f

ωμ0

= 0, (A14)

for the generalized problem. In the adjoint formulation of eq. (39),

the identity (A14) still holds true with ω negative. Therefore, a

variant of the divergence correction method described by U&S can

still be applied to accelerate convergence in the generalized forward

and adjoint problems.
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